جواب:
وضاحت:
یہ کیلکولیٹر اقدار ہیں
جواب:
0، 2
وضاحت:
ٹین ایکس حقیقی منطق پر کسی بھی نمبر ہوسکتی ہے، بشمول منطقی نمبر بشمول انٹیگر / انٹری.
انفرادی طور پر، زاویہ (ٹرانسفرینٹل نمبرز) ہیں جس میں رومانیا کی پیمائش (سینس 0 کے لئے 0) ہے، جو کہ ریاضی نمبروں میں تخمینہ لگتے ہیں، ڈگری کی پیمائش میں. مثال کے طور پر، آرکٹان 1 =
تقسیم کرنے سے، یہ ہماری سہولت کا معاملہ ہے
جواب:
کی صحیح قیمت کے لئے بہترین اظہار ہے
وضاحت:
بنیادی طور پر "عین مطابق" قیمت تلاش کرنے کا کوئی طریقہ نہیں ہے
حقیقی نمبروں کی عام طور پر صفر ریاضی کی طرف سے
یہ صحیح قیمت ہے
عام طور پر ڈھال کے درمیان تعلق (جس کا ایک ٹیننٹ ہے) اور ایک زاویہ ٹرانسینٹل ہے. صرف منطقی خطرات کے درمیان
آپ سمتری، محور کی محور کو کیسے تلاش کرتے ہیں اور فنکشن y = -x ^ 2 + 2x کی زیادہ سے زیادہ یا کم از کم قیمت تلاش کرتے ہیں؟
(1،1) -> مقامی زیادہ سے زیادہ. عمودی شکل میں مساوات ڈال، y = -x ^ 2 + 2x y = - [x ^ 2-2x] y = - [(x-1) ^ 2-1] y = - (x-1) ^ 2 + 1 عمودی شکل میں، عمودی کی ایکس کے قواعد و ضوابط ایکس کی قیمت ہے جس میں مربع کی برابر 0، اس صورت میں، 1 (1 (1-1 سے) ^ 2 = 0) ہوتا ہے. اس قیمت کو حل کرنے میں، Y قیمت 1 ہو جائے گا. آخر میں، کیونکہ یہ ایک منفی چوک ہے، اس نقطہ (1،1) مقامی زیادہ سے زیادہ ہے.
آپ ٹین [آرکیسی کاسم (-1/3)] کی صحیح قدر کیسے تلاش کرتے ہیں؟
آپ trigonometric شناخت ٹین (تھیٹا) = sqrt ((1 / cos ^ 2 (theta) -1)) نتیجہ: ٹین [arccos (-1/3)] = رنگ (نیلے رنگ) (2sqrt (2)) کی طرف سے شروع ارکیس (-1/3) کو زاویہ تھیٹا => آرکاس (-1/3) = theta => cos (theta) = - 1/3 اس کا مطلب یہ ہے کہ اب ہم اب ٹین تلاش کرتے ہیں شناخت: کاؤنٹی ^ 2 (تھیٹا) + گن ^ 2 (تھیٹا) = 1 تمام دونوں اطراف کو cos ^ 2 (تھیٹا) کے ذریعہ تقسیم کریں، 1 + ٹین ^ 2 (تھیٹا) = 1 / کاسم ^ 2 (تھیٹا) = > ٹین ^ 2 (تھیٹا) = 1 / کاس ^ 2 (theta) -1 => ٹین (تھیٹا) = sqrt ((1 / cos ^ 2 (theta) -1)) یاد رکھیں، ہم نے کہا کہ پہلے (کہتا) = -1 / 3 => ٹین (تھیٹا) = sqrt (1 / (- 1/3) ^ 2-1) = sqrt (1 / (1/9) -1) = s
آپ (2،3) پر مرکوز کی عام شکل کو کیسے تلاش کرتے ہیں اور ایکس محور سے ٹینٹینٹ تلاش کرتے ہیں؟
سمجھیں کہ ایکس محور کے ساتھ رابطے پوائنٹ ایک عمودی لائن دائرے کے مرکز تک دیتا ہے، جس میں فاصلے کے برابر ہوتا ہے. (x-2) ^ 2 + (x-3) ^ 2 = 9 (xh) ^ 2 + (xk) ^ 2 = ρ ^ 2 ایکس محور کو تناسب کا مطلب ہے: ایکس محور کو چھونے، تو فاصلے سے مرکز ریڈیو ہے. اس مرکز سے فاصلے پر اونچائی (y) کے برابر ہے. لہذا، ρ = 3 دائرے کا مساوات بن جاتا ہے: (x-2) ^ 2 + (x-3) ^ 2 = 3 ^ 2 (x-2) ^ 2 + (x-3) ^ 2 = 9