اس سوال کا جواب آسان ہے لیکن کچھ ریاضی عام علم اور عام احساس کی ضرورت ہوتی ہے.
مساوی الساقین مثلث:-
ایک مثلث جس کی صرف دو طرفہ برابر ہیں، ایک آئساسسلس مثلث کہا جاتا ہے. ایک آئسسلس مثلث بھی دو برابر فرشتے ہیں.
ایکٹ مثلث: -
ایک مثلث جس کے تمام فرشتوں سے زیادہ ہیں
دی گئی مثلث مثلث ہے
اب ملائکہ کے لئے دو امکانات ہیں.
اس سوال کے لئے دو اوپر امکانات میں سے صرف ایک درست ہو گا.
دو دو امکانات کو ایک کی طرف سے توثیق کرتے ہیں.
دو برابر فرشتوں میں سے ہوں
ہم جانتے ہیں کہ مثلث کے تین فرشتوں کی رقم برابر ہے
امکان میں
دو برابر فرشتوں میں سے ہوں
اس امکان میں فرشتوں کے اقدامات ہیں
تین تین فرشتوں کی حد میں ہیں
لہذا، سب سے بڑے اور سب سے چھوٹے فرشتوں کے اقدامات ہیں
ایک آئسسلس مثلث کے بیس زاویہ مباحثہ ہیں. اگر بیس بیس زاویہ کی پیمائش دو بار ہے زاویہ کی پیمائش، آپ کو تینوں زاویہ کی پیمائش کیسے ملتی ہے؟
بیس زاویے = (2pi) / 5، تیسری زاویہ = pi / 5 ہر بیس کی زاویہ = سٹی کو دو تاکہ اس طرح تیسرے زاویہ = ٹیٹاٹا / 2 کے بعد سے تین زاویوں کی رقم کو دو پندرہ برابر + theta / 2 = pi 5theta = 2pi = (2pi) / 5:. تیسری زاویہ = (2pi) / 5/2 = pi / 5 اس طرح: بیس زاویہ = (2pi) / 5، تیسری زاویہ = پی / 5
مثلث XYZ isosceles ہے. بیس زاویہ، زاویہ X اور زاویہ Y، چار بار عمودی زاویہ کی پیمائش، زاویہ ز. زاویہ ایکس کی پیمائش کیا ہے؟
دو مساوات دو نامعلوموں کے ساتھ مقرر کریں آپ X اور Y = 30 ڈگری، Z = 120 ڈگری ملیں گے آپ جانتے ہیں کہ X = Y، اس کا مطلب یہ ہے کہ آپ X کی طرف سے Y کے متبادل یا اس کے برعکس کرسکتے ہیں. آپ دو مساوات کا کام کر سکتے ہیں: چونکہ 180 ڈگری ایک مثلث میں ہے، اس کا مطلب یہ ہے: 1: X + Y + Z = 180 ذیلی ایکس Y کی طرف سے X: 1: X + X + Z = 180 1: 2X + Z = 180 ہم زاویہ Z کی بنیاد پر ایک اور مساوات بھی بنا سکتے ہیں زاویہ سے 4 گنا بڑا ہے X: 2: Z = 4X اب، ہم مساوات 2 مساوات 1 میں Z کو 4x: 2X + 4X = 180 6X = 180 ایکس = 30 داخل کرکے کرکے ایکس کی یہ قیمت پہلی یا دوسری مساوات میں (چلو نمبر 2): Z = 4X Z = 4 * 30 Z = 120 X = Y X = 30 اور Y = 30
دو زاویہ ایک لکیری جوڑی بناتے ہیں. چھوٹے زاویہ کی پیمائش بڑی زاویہ کی ایک نصف ہے. بڑے زاویہ کی ڈگری کی پیمائش کیا ہے؟
120 ^ @ زاویہ ایک لکیری جوڑے میں 180 ڈگری کی کل ڈگری پیمائش کے ساتھ براہ راست لائن بنائیں. اگر جوڑی میں چھوٹے زاویہ بڑے زاویہ کا اندازہ نصف ہے، تو ہم ان کو اس طرح سے متعلق کرسکتے ہیں: چھوٹے زاویہ = x ^ @ بڑے زاویہ = 2x ^ @ چونکہ زاویہ کی مقدار 180 ^ @ ہے، ہم کہہ سکتے ہیں وہ x + 2x = 180. یہ 3x = 180، تو x = 60 آسان ہوتا ہے. اس طرح، بڑے زاویہ (2xx60) ^ @، یا 120 ^ @ ہے.