سمتری کی محور کے لئے فارمولہ دیا جاتا ہے
چوک مساوات میں
اس مساوات میں، بی قیمت 11 ہے اور ایک قیمت 6 ہے
اس طرح، سمتری کی محور ہے
اب ہم افقی لائن کو ڈھونڈتے ہیں، ہمیں اس جگہ کو تلاش کرنا ہوگا جہاں اس افقی کی طرح مساوات کو پورا ہوتا ہے کیونکہ اس کی وجہ ہے کہ عمودی ہے.
ٹھیک ہے، اسے تلاش کرنے کے لئے، ہم صرف پلگ ان کرتے ہیں
ڈومینٹر تبدیل کرنا تاکہ تمام حصوں میں ایک ہی ہے
لہذا، ہماری عمودی ہے
گراف 2 (y - 2) = (x + 3) ^ 2 کے لئے سمیٹری اور عمودی کی محور کیا ہے؟
عمودی (-3، 2) میں ہے اور سمتری کی محور ایکس = -3 دی گئی ہے: 2 (y - 2) = (x + 3) ^ 2 ایک پارابولا کے مساوات کے لئے عمودی شکل ہے: y = a (x - h) ^ 2 + k جہاں "a" x ^ 2 اصطلاح کی گنجائش ہے اور (h، k) عمودی ہے. (ایکس -3) کے طور پر دیئے گئے مساوات میں (x + 3) لکھیں: 2 (y - 2) = (x - -3) ^ 2 دونوں طرفوں کو دونوں طرف تقسیم کریں 2: Y - 2 = 1/2 (x - -3) ^ 2 2 دونوں اطراف میں شامل کریں: y = 1/2 (x -3 -3) ^ 2 + 2 عمودی (-3، 2) میں ہے اور سمتری کی محور ایکس = 3 ہے.
گراف ایف (x) = 2/3 (x + 7) ^ 2-5 کے لئے سمیٹری اور عمودی کی محور کیا ہے؟
وضاحت ملاحظہ کریں یہ ایک چراغ کی عمودی شکل مساوات ہے. لہذا آپ مساوات کو تقریبا مساوات سے پڑھ سکتے ہیں. سمیٹری کی محور ہے (-1) xx7-> x = -7 عمودی -> (x، y) = (- 7، -5)
گراف ایف (x) = 2x ^ 2 + x - 3 کے لئے سمیٹری اور عمودی کی محور کیا ہے؟
سمیٹری کی محور ایکس = -1 / 4 ہے، عمودی = = - - 1/4، -25 / 8 ہے. ہم چوکوں f (x) = 2x ^ 2 + x-3 = 2 (x ^ 2 + 1 مکمل کرتے ہیں. / 2x) -3 = 2 (x ^ 2 + 1 / 2x + 1/16) -3-2 / 16 = 2 (x + 1/4) ^ 2-25 / 8 سمیٹری کی محور ایکس = -1 / 4 عمودی = (- 1/4، -25 / 8) گراف {2x ^ 2 + x-3 [-7.9، 7.9، -3.95، 3.95]}