دو مسلسل انباق کی مصنوعات 24 ہے. دو انباق تلاش کریں. پہلے دو دو انتروں میں سے کم سے کم پوائنٹس کی شکل میں جواب دیں. جواب؟
دو مسلسل یہاں تک کہ دو درجے والے (4،6) یا (-6، -4) آتے ہیں، رنگ (سرخ) (ن) اور ن 2 دو مسلسل اندرونیوں کو، جہاں رنگ (سرخ) (n inZZ پروڈکٹ n اور N-2 24 یعنی این (ن -2) = 24 => ن ^ 2-2n-24 = 0 اب، [(-6) + 4 = -2 اور (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (n-6) (n + 4) = 0: .n-6 = 0 یا n + 4 = 0 ... تک [n inZZ] => رنگ (سرخ) (ن = 6 یا ن = -4 (i) رنگ (سرخ) (ن = 6) => رنگ (سرخ) (ن -2) = 6-2 = رنگ (سرخ) (4) لہذا، دو مسلسل یہاں تک کہ: (4،6) (ii)) رنگ (سرخ) (ن = -4) => رنگ (سرخ) (ن -2) = -4-2 = رنگ (سرخ) (- 6) تو، دو مسلسل یہاں تک کہ دو: (- 6، -4)
تاماس نے مساوات = 3x + 3/4 لکھا. جب سینڈرا نے اس مساوات کو لکھا، تو پتہ چلا کہ ان کی مساوات ٹاماس کے مساوات کے طور پر تمام ہی حل تھے. سینڈرا کی کونسی مساوات ہو سکتی ہے؟
4y = 12x +3 12x-4y +3 = 0 ایک مساوات کئی فارموں میں دی جاسکتی ہے اور اب بھی اس کا مطلب ہے. y = 3x + 3/4 "" ((ڈھال / مداخلت کے طور پر جانا جاتا ہے.) حصول کو دور کرنے کے لئے 4 کی طرف سے اضافہ: 4y = 12x + 3 "" rarr 12x-4y = -3 "" (معیاری شکل) 12x- 4y +3 = 0 "" (عام شکل) یہ سب سے آسان شکل میں ہیں، لیکن ہم ان کے انفرادی طور پر مختلف حالتوں میں بھی ہوسکتے ہیں. 4y = 12x + 3 کے طور پر لکھا جا سکتا ہے: 8y = 24x +6 "" 12y = 36x + 9، "" 20y = 60x +15 وغیرہ
صرف انباق کا استعمال کرتے ہوئے معیاری فارم میں مساوات کیا ہے؟ y = 1 / 6x + 10
X-6y = -60 مساوات کی معیاری شکل Ax + by = C اس قسم کے مساوات میں، X اور Y متغیر اور A، B، اور C ہیں integers ہیں. دیئے گئے مساوات کی ڈھال - مداخلت کی شکل کو تبدیل کرنے کے لئے، دونوں طرفوں کو دائیں ہاتھ سے حصہ نکالنے کے لئے 6 کے ساتھ ضرب اور پھر متغیر ایکس بائیں ہاتھ پر لائیں. y = 1 / 6x + 10 6y = x + 60 سوئچ اطراف: x + 60 = 6y x-6y + 60-60 = 6y-6y-60 آسان کریں: x-6y = -60 یہ یہ ہے!