جواب:
مسئلہ ناقابل یقین ہے
وضاحت:
کوئی آرکیسی نہیں ہے کہ ان کا کاسمین 2 اور 3 برابر ہے.
تجزیاتی نقطہ نظر سے،
جواب:
اصلی کے لئے
# -3 گناہ (arccos (2)) - کاسم (arccos (3)) = -3sqrt (3) i-3 #
وضاحت:
حقیقی اقدار کے حقیقی قابل قدر کام کرتا ہے
تاہم، ان افعال کی تعریف کو پیچیدہ افعال میں توسیع کرنا ممکن ہے
سے شروعات:
# e ^ (ix) = cos x + i sin x #
#cos (-x) = cos (x) #
#sin (-x) = -in (x) #
ہم کٹوتی کر سکتے ہیں:
#cos (x) = (e ^ (ix) + e ^ (- ix)) / 2 #
#sin (x) = (e ^ (ix) -e ^ (- ix)) / (2i) #
لہذا ہم وضاحت کر سکتے ہیں:
#cos (z) = (e ^ (iz) + e ^ (- iz)) / 2 #
#sin (z) = (e ^ (iz) -e ^ (- iz)) / (2i) #
کسی بھی کمپلیکس نمبر کے لئے
بہت سے اقدار کو تلاش کرنا ممکن ہے
مناسب امیدواروں کو تلاش کرنے کے لئے، حل کریں
تاہم، یاد رکھیں کہ شناخت
# ایسین (آرکوس (2)) = + -قرآن (1-2 ^ 2) = + -قرآن (-3) = + -قرآن (3) میں #
مجھے امید ہے کہ اس طرح پرنسپل قیمت کی وضاحت کرنا ممکن ہے
کسی بھی صورت میں،
یہ سب مل کر ڈالیں، ہم تلاش کریں:
# -3 گناہ (arccos (2)) - کاسم (arccos (3)) = -3sqrt (3) i-3 #
اگر آپ آرک 45 سینٹی میٹر کے مرکزی زاویہ کو پیش کرتے ہیں تو 17 سینٹی میٹر کے ریڈیو کے ساتھ ایک دائرے کی آرک کی حد تک کیسے ملتی ہے؟
L = 4.25pi ~ = 13.35 "سینٹی میٹر" کی آرک کی لمبائی ہے کہ ایل آرڈیڈیا ہے R زاویہ (ردی میں) آرک کی طرف سے پیش کیا جاتا ہے تو پھر فارمولا ہے ":" L = rtheta r = 17cm theta = 45 ^ o = pi / 4 => L = 17xxpi / 4 = 4.25pi
Chebyshev Polynomial T_n (x) = کوش (ن (آرک کوش (x))، x = = 1 اور دوبارہ پڑھنے کا تعلق T_ (n + 2) (x) = 2xT_ (n + 1) (x) - T_n ( X)، T_0 (x) = 1 اور T_1 (x) = x کے ساتھ، آپ کو کیسے (7 آرک کوش (1.5)) = 421.5 کا کیا مطلب ہے؟
T_0 (1.5) یا مختصر طور پر، T_0 = 1. T_1 = 1.5 T_2 = 2 (1.5) (1.5) T_1-T_0 = 4.5-1 = 3.5، T_n = 2xT_ (n-1) -T_ (n-2)، n> = 2 کا استعمال کرتے ہوئے. T_3 = 3 (3.5) -1.5 = 9 T_4 = 3 (9) -3.5 = 23.5 T_5 = 3 (23.5) -9 = 61.5 T_6 = 3 (61.5) -23.5 = 161 T_7 = 3 (161) -61.5 = 421.5 ویکیپیڈیا Chebyshev Polynomials ٹیبل، سے. # T_7 (x) = 64x ^ 7-112x ^ 5 + 56x ^ 3-7x
گناہ کیا ہے (آرک کاسم (2)) + 3cos (آرکٹان (-1)) برابر؟
کچھ نہیں ارکوس ایک ایسا فنکشن ہے جو صرف 1 -1.1] پر بیان کیا جاتا ہے لہذا آرکیس (2) موجود نہیں ہے. دوسری طرف، آرکٹان آر آر پر بیان کیا جاتا ہے تاکہ آرکٹان (-1) موجود ہے. یہ ایک عجیب فنکشن ہے تاکہ آرکٹان (-1) = -ترانٹ (1) = -pi / 4. تو 3cos (آرکٹان (-1)) = 3cos (-pi / 4) = 3cos (pi / 4) = (3sqrt (2)) / 2.