جواب:
وضاحت:
پہلی بات یہ ہے کہ یہ کتنا مکمل طور پر اس زاویہ کا احاطہ کرتا ہے
تقسیم
اگر
اگر
اگر
اگر
تو
مثلث XYZ isosceles ہے. بیس زاویہ، زاویہ X اور زاویہ Y، چار بار عمودی زاویہ کی پیمائش، زاویہ ز. زاویہ ایکس کی پیمائش کیا ہے؟
دو مساوات دو نامعلوموں کے ساتھ مقرر کریں آپ X اور Y = 30 ڈگری، Z = 120 ڈگری ملیں گے آپ جانتے ہیں کہ X = Y، اس کا مطلب یہ ہے کہ آپ X کی طرف سے Y کے متبادل یا اس کے برعکس کرسکتے ہیں. آپ دو مساوات کا کام کر سکتے ہیں: چونکہ 180 ڈگری ایک مثلث میں ہے، اس کا مطلب یہ ہے: 1: X + Y + Z = 180 ذیلی ایکس Y کی طرف سے X: 1: X + X + Z = 180 1: 2X + Z = 180 ہم زاویہ Z کی بنیاد پر ایک اور مساوات بھی بنا سکتے ہیں زاویہ سے 4 گنا بڑا ہے X: 2: Z = 4X اب، ہم مساوات 2 مساوات 1 میں Z کو 4x: 2X + 4X = 180 6X = 180 ایکس = 30 داخل کرکے کرکے ایکس کی یہ قیمت پہلی یا دوسری مساوات میں (چلو نمبر 2): Z = 4X Z = 4 * 30 Z = 120 X = Y X = 30 اور Y = 30
آپ نامعلوم نامعلوم لمبائی اور مثلث ABC کی زاویہ کے اقدامات کیسے حل کرتے ہیں جہاں زاویہ سی = 90 ڈگری، زاویہ بی = 23 ڈگری اور ایک طرف = 24؟
A = 90 ^ سر-بی = 67 ^ سر ب = ایک ٹین بی تقریبا 10.19 سی = ایک / کا بی تقریبا 26.07 ہم صحیح حق مثلث، ایک = 24، سی = 90 ^ سر، بی = 23 ^ سر ہے. صحیح مثلث میں غیر دائیں زاویہ تکمیل ہیں، A = 90 ^ سر - 23 ^ سر = 67 ^ سر دائیں مثلث میں ہم نے B = a / c ٹین B = b / a so b = a tan B = 24 ٹین 23 تقریبا 10.19 سی = = ایک / کاس B = 24 / کاش 23 تقریبا 26.07
دو زاویہ تکمیل ہیں. پہلی زاویہ اور ایک چوتھائی کی پیمائش کا دوسرا دوسرا زاویہ 58.5 ڈگری ہے. چھوٹے اور بڑے زاویہ کے اقدامات کیا ہیں؟
زاویہ کی تھیتا اور پی آئی اے. ضمنی زاویہ وہ ہیں جن کی رقم 90 ^ @ ہے. یہ دیا جاتا ہے کہ تھیٹا اور فائی تکمیل ہیں. تھیٹا + phi = 90 ^ @ ........... (i) پہلی زاویہ اور ایک چوتھائی کی پیمائش کا خلاصہ دوسرا زاویہ 58.5 ڈگری برابر مساوات کے طور پر لکھا جا سکتا ہے. Theta + 1 / 4phi = 58.5 ^ @ طرف سے دونوں اطراف ضرب 4. 4. 4theta + phi = 234 ^ @ کا مطلب ہے 3theta + theta + phi = 234 ^ @ implies 3theta + 90 ^ 0 = 234 ^ @ implies 3theta = 144 ^ @ کا مطلب ہے Theta = 48 ^ @ رکھوٹا = 48 ^ @ میں (i) 48 ^ @ + phi = 90 ^ @ کا مطلب ہے phi = 42 ^ @ لہذا، چھوٹے زاویہ 42 ^ @ اور بڑے زاویہ ہے 48 ^ @