جواب:
ذیل میں ایک حل عمل ملاحظہ کریں:
وضاحت:
دو پوائنٹس کے درمیان فاصلے کا حساب کرنے کے لئے فارمولا:
مسئلہ میں پوائنٹس سے اقدار کو کم کرنا:
دو (1، 1) اور (10، 4) ہم آہنگی طیارے پر پوائنٹس A اور B کے ہم آہنگی بنیں. پوائنٹس A سے بی پوائنٹس سے یونٹس میں فاصلہ کیا ہے؟
"فاصلہ" = sqrt (73) 8.544 یونٹس دیئے گئے: A (2، 1)، بی (10، 4). A سے B. فاصلہ تلاش کریں فاصلہ فارمولہ استعمال کریں: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((4 - 1) ^ 2 + (10 - 2) ^ 2) = sqrt (3 ^ 2 + 8 ^ 2) = sqrt (73)
سرکل اے (5، 4) اور ایک ریڈیو 4 میں ایک مرکز ہے. سرکل بی میں ایک مرکز ہے (6، -8) اور 2 کے ایک ریڈیو. حلقوں کو اووریلپ کیا ہے؟ اگر نہیں، تو ان کے درمیان سب سے چھوٹی فاصلے کیا ہے؟
حلقوں کو اوورلوپ نہیں ہے. سب سے چھوٹی فاصلے = ڈی ایس = 12.04159-6 = 6.04159 "" یونٹس دیئے گئے اعداد و شمار سے: سرکل اے (5.4) اور ایک ریڈیوس میں ایک مرکز ہے 4. سرکل بی میں ایک مرکز ہے (6، -8) اور ایک ریڈیو 2. حلقوں کو اوورلوپ کیا ہے؟ اگر نہیں، تو ان کے درمیان سب سے چھوٹی فاصلے کیا ہے؟ ریگولیٹ کی رقم کو کم کریں: سم S = r_a + r_b = 4 + 2 = 6 "" یونٹس دائرے کے مرکز سے دوری کو اکٹھا کریں دائرہ ب کے مرکز میں: D = sqrt ((x_a-x_b) ^ 2 + (y_a -y_b) ^ 2) d = sqrt ((5-6) ^ 2 + (4--8) ^ 2) d = sqrt ((- 1) ^ 2 + (12) ^ 2) d = sqrt145 = 12.04159 سب سے چھوٹی فاصلہ = ڈی ایس = 12.04159-6 = 6.04159 خدا برکت .... مجھے امی
سرکل اے (3، 2) اور 6 کے ایک ریڈیو پر ایک مرکز ہے. سرکل بی میں ایک مرکز ہے (-2، 1) اور 3 کے ایک ریڈیو. حلقوں کو اووریلپ کیا ہے؟ اگر نہیں، تو ان کے درمیان سب سے چھوٹی فاصلے کیا ہے؟
فاصلے D (A، B) اور ہر دائرے کا ردعمل r_A اور R_B شرط کو پورا کرنا ضروری ہے: D (A، B) <= r_A + r_B اس صورت میں، وہ کرتے ہیں، تو حلقوں کو اوپریپ. اگر دو حلقوں پر قابو پانے کا مطلب یہ ہے کہ ان کے مراکز کے درمیان کم فاصلے D (A، B) ان کے ردعمل کے مقابلے میں کم ہونا چاہیے، کیونکہ یہ تصویر سے سمجھا جا سکتا ہے: (تصویر میں نمبر انٹرنیٹ سے بے ترتیب ہیں) لہذا کم از کم ایک بار: ڈی (اے، بی) <= r_A + r_B ایولائڈن فاصلے D (A، B) شمار کیا جاسکتا ہے: D (A، B) = sqrt ((Δx) ^ 2 + (Δy) ^ 2) لہذا: (اے، بی) <= r_A + r_B sqrt ((Δx) ^ 2 + (Δy) ^ 2) <= r_A + r_B sqrt ((3 - (- 2)) ^ 2+ (2- 1) ^ 2) <= 6 + 3 sqrt (25 + 1) <= 9 sqrt