جواب:
مساوات ہے
وضاحت:
پرابولا پر ایک نقطہ نظر ڈائرکٹری اور توجہ سے مساوات ہے.
توجہ ہے
ڈائرکٹری ہے
دونوں اطراف گراؤنڈ
گراف {((x-3) ^ 2 + 2y-13) (y-7) ((x-3) ^ 2 + (y-6) ^ 2-0.01) = 0 -2.31، 8.79، 3.47، 9.02 }
(14،15) پر توجہ مرکوز کے ساتھ پرابولا کے معیاری شکل میں مساوات کیا ہے اور y = 7 کے ایک ڈائریکٹر کیا ہے؟
پارابولا کی مساوات y = 1/88 (x-14) ^ 2 + 15 ہے parabola کے معیاری مساوات y = ایک (x-h) ^ 2 + k جہاں (ایچ، ک) عمودی ہے. لہذا پارابولا کے برابر مساوات y = a (x-14) ^ 2 + 15 ڈائرکٹری (y = -7) سے عمودی کی فاصلہ 15 + 7 = 22 ہے. ایک = 1 / (4 ڈی) = 1 / (4 * 22) = 1/88. لہذا پارابولا y = 1/88 (x-14) ^ 2 + 15 گراف {1/88 (x-14) ^ 2 + 15 [-160، 160، -80، 80]} [جواب]
(-18،30) پر توجہ مرکوز کے ساتھ پرابولا کے معیاری شکل میں مساوات کیا ہے اور y = 22 کا ایک ڈائریکٹر کیا ہے؟
معیاری فارم میں parabola کی مساوات (x + 18) ^ 2 = 16 (y-26) توجہ مرکوز (-18،30) ہے اور ڈائریکٹر y = 22 ہے. عمودی توجہ مرکوز اور ڈائریکٹر کے درمیان وسط میں ہے. لہذا عمودی (-18، (30 + 22) / 2) آئی اے (-18، 26) میں ہے. پرابولا کے مساوات کے عمودی شکل y = a (x-h) ^ 2 + k؛ (h.k)؛ عمودی ہونا یہاں H = -18 اور K = 26. لہذا پارابولا کی مساوات y = a (x + 18) ^ 2 +26 ہے. ڈائرکٹری سے عمودی فاصلے d = 26-22 = 4 ہے، ہم جانتے ہیں کہ ڈی = 1 / (4 | ایک |):. 4 = 1 / (4 | ایک |) یا | ایک | = 1 / (4 * 4) = 1/16. یہاں ڈائرکٹری عمودی سے نیچے ہے، لہذا پارابولا اوپر کھولتا ہے اور مثبت ہے. :. ایک = 1/16. پارابولا کی مساوات y = 1/16 (x + 18) ^ 2 +26
(3،6) اور ایکس = 7 کے ایک ڈائریکٹر پر توجہ مرکوز کے ساتھ پارابولا کے معیاری شکل میں مساوات کیا ہے؟
ایکس 5 = -1 / 8 (y-6) ^ 2 سب سے پہلے، چلو کا تجزیہ کیا ہے کہ ہمیں کیا پتہ ہے کہ پارابولا کا سامنا کیا ہے. یہ ہمارا مساوات کیسا ہوگا اس پر اثر انداز کرے گا. ڈائرکٹری x = 7 ہے، مطلب یہ ہے کہ لائن عمودی ہے اور پارابولا کرے گا. لیکن یہ کونسا سامنا کرے گا: بائیں یا دائیں؟ ٹھیک ہے، توجہ مرکوز ڈائرکٹری (3 <7) کے بائیں طرف ہے. ہمیشہ توجہ مرکوز کے اندر اندر موجود ہے، لہذا ہمارے پارابیل کا سامنا کرنا پڑے گا. ایک پارابولا کے لئے فارمولہ جس کا سامنا باقی ہے اس کا یہ ہے: (x-h) = -1 / (4p) (y-k) ^ 2 (یاد رکھیں کہ عمودی (ایچ، ک) ہے (ہم اب ہمارا مساوات پر کام کریں! ہم نے توجہ مرکوز اور ڈائرکٹری کو پہلے سے ہی جانتے ہیں، لیکن ہمیں مزید ض