جواب:
# y = x ^ 2/12-x / 2-5 / 4 #
وضاحت:
دیئے گئے -
عمودی
فوکس
پارابولا کے مساوات
# (x-h) ^ 2 = 4a (y-k) #
کہاں -
# a = sqrt ((3-3) ^ 2 + (- 2-1) ^ 2) = 3 #
کے اقدار کو ذیلی بنائیں
# x-3) ^ 2 = 4.3 (y + 2) #
# x ^ 2-6x + 9 = 12y + 24 #
# 12y + 24 = x ^ 2-6x + 9 #
# 12y = x ^ 2-6x + 9-24 #
# y = 1/12 (x ^ 2-6x-15) #
# y = x ^ 2/12-x / 2-5 / 4 #
(2، 6) اور ایک عمودی (-2، 9) پر توجہ مرکوز کے ساتھ ایک پرابولا کی مساوات کیا ہے؟ کیا فوکس اور عمودی تبدیل کردیے جائیں گے؟
مساوات y = -1 / 12 (x + 2) ^ 2 + 9. دوسرا مساوات y = 1/12 (x + 2) * 2 + 6 توجہ F = (--6) ہے اور عمودی وی = (- 2،9) ہے لہذا، ڈائریکٹر y = 12 کے طور پر عمودی توجہ مرکوز اور ڈائرکٹری (y + 6) / 2 = 9 =>، y + 6 = 18 =>، y = 12 پر قابو پانے سے متصل ہے اور پرابولا پر کوئی پوائنٹ (x، y) ڈائریکٹر y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 گراف {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47، 32.45، -16.23، 16.25]} دوسرا کیس یہ ہے کہ توجہ F = (- 2،9) ہے اور عمودی وی = (- 2،6) ہے لہذا، ڈائریکٹر Y =
عمودی (41،71) اور ظرو (0،0) (82،0) دی گئی پیرابولا کے عمودی شکل کیا ہے؟
عمودی شکل ہوگی-71/1681 (x-41) ^ 2 + 71 عمودی شکل کے برابر مساوات کی طرف سے دی گئی ہے: f (x) = a (xh) ^ 2 + k، جہاں عمودی نقطہ پر واقع ہے (h ، k) لہذا، عمودی (41،71) (0،0) میں، ہم حاصل کرتے ہیں، f (x) = a (xh) ^ 2 + k 0 = a (0-41) ^ 2 + 71 0 = ایک (-41) ^ 2 + 71 0 = 1681a + 71 a = -71/1681 لہذا عمودی شکل f (x) = -71/1681 (x-41) ^ 2 + 71 ہو گی.
پیرابولا کی عمودی شکل جس کی معیاری شکل مساوات y = 5x ^ 2-30x + 49 ہے؟
عمودی ہے = (3،4) ہم مساوات کو دوبارہ لکھیں اور چوکوں کو y = 5x ^ 2-30x + 49 = 5 (x ^ 2-6x) +49 = 5 (x ^ 2-6x + 9) +49 -45 = 5 (x-3) ^ 2 + 4 گراف {5x ^ 2-30x + 49 [-12.18، 13.14، -0.18، 12.47]}