کیا ہے (6x ^ 2 + 3x) + (2x ^ 2 + 6x)؟

کیا ہے (6x ^ 2 + 3x) + (2x ^ 2 + 6x)؟
Anonim

جواب:

# 8x ^ 2 + 9x #

وضاحت:

دیئے گئے -

# (6x ^ 2 + 3x) + (2x ^ 2 + 6x) #

# 6x ^ 2 + 3x + 2x ^ 2 + 6x #

# 8x ^ 2 + 9x #

قزاقوں کو ہٹا دیں اور ایکس ^ 2 اصطلاحات کو مل کر شامل کریں. آپ 6x ^ 2 + 2 ایکس ^ 2 = 8 ایکس ^ 2 حاصل کریں.

اس کے بعد ایکس شرائط کے ساتھ ہی کریں

3x + 6x = 9x

8 ایکس ^ 2 + 9 ایکس

خلاصہ

# (6 x ^ 2 + 3x) + (2x ^ 2 + 6x) = #

# 6 x ^ 2 + 2x ^ 2 + 3x + 6x = #

# x ^ 2 (6 + 2) + x (3 + 6) = #

8 ایکس ^ 2 + 9 ایکس

جواب:

# (6x ^ 2 + 3x) + (2x ^ 2 + 6x) = 8x ^ 2 + 9x #

وضاحت:

یہاں ریاضی کی کچھ بنیادی مناسبیت کا حل حل کرنے کا ایک طریقہ ہے:

اضافہ ملحقہ ہے:

# a + (b + c) = (a + b) + c #

اضافہ مشترکہ ہے:

# a + b = b + a #

ضرب بائیں اور دائیں تقسیم تقسیم کے علاوہ ہے:

#a (b + c) = ab + ac #

# (a + b) c = ac + bc #

لہذا ہم تلاش کریں:

# (6x ^ 2 + 3x) + (2x ^ 2 + 6x) #

# = 6x ^ 2 + (3x + (2x ^ 2 + 6x)) "" "# (ہم آہنگی کے ذریعہ)

# = 6x ^ 2 + ((2x ^ 2 + 6x) + 3x) "" "# (تعبیر کی طرف سے)

# = 6x ^ 2 + (2x ^ 2 + (6x + 3x)) "" "# (ہم آہنگی کے ذریعہ)

# = (6x ^ 2 + 2x ^ 2) + (6x + 3x) "" # (ہم آہنگی کے ذریعہ)

# = (6 + 2) x ^ 2 + (6 + 3) x "" # (دو بار حق تقسیم کی طرف سے)

# = 8x ^ 2 + 9x #