جواب:
دائرے کا مساوات ہے
وضاحت:
مرکز کے ساتھ ایک دائرے کا مساوات
یا
جیسا کہ
اور جیسا کہ ہمیں صرف ایک حل ہونا چاہئے، اس چوک مساوات کی تبعیض ہونا چاہئے
لہذا،
اور
(3، 2) کے مرکز اور نقطہ (5، 4) کے ذریعہ مرکز کے ساتھ ایک دائرے کی مساوات کی معیاری شکل کیا ہے؟
(x-3) ^ 2 + (y-2) ^ 2 = 8> ایک دائرے کے مساوات کے معیاری شکل یہ ہے: (x - a) ^ 2 + (y - b) ^ 2 = r ^ 2 جہاں ( ایک، بی) مرکز اور آر کے ساتھی ہیں، ریڈیو. یہاں مرکز جانا جاتا ہے لیکن ریڈیو کو تلاش کرنے کی ضرورت ہے. اس کو 2 کنڈ پوائنٹس کا استعمال کیا جا سکتا ہے. رنگ (نیلے) "فاصلہ فارمولہ" کا استعمال کرتے ہوئے d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2) دو (دو x_1، y_1) = (3،2) "اور" (x_2، y_2) = (5،4) d = r = sqrt ((5-3) ^ 2 + (4-2) ^ 2) = sqrt8 دائرے کا مساوات ہے: (x-3) ^ 2 + (y-2) ^ 2 = (sqrt8) ^ 2
آپ کو ایک حلقہ ب دیا جاتا ہے جس کے مرکز (4، 3) اور ایک نقطہ (10، 3) اور ایک نقطۂ (10، 3) اور ایک اور حلقہ سی جس کا مرکز (3، -5) ہے اور اس دائرے پر ایک نقطہ ہے (1، -5) . دائرہ ب کے تناسب سی میں تناسب کیا تناسب ہے؟
3: 2 "یا" 3/2 "ہمیں حلقوں کی ریڈی کا حساب کرنے کی ضرورت ہے اور اس کا موازنہ" "ریڈیو" مرکز کے مرکز "سے" فاصلے پر "نقطہ پر فاصلے پر فاصلہ ہے. ) "اور نقطہ" = (10.3) "ہے جب سے Y-coordinates دونوں ہیں 3، پھر ردعمل بی" = 10-4 = 6 "کے" RArr "ریورس کے X-coordinates میں فرق ہے" کی سی "= (- 3، -5)" اور "نقطہ" = (1، -5) "کی ہے" - Y-coordinates دونوں ہیں - 5 "RArr" سی "= 1 - (- 3) = 4" تناسب " = (رنگ (سرخ) "radius_B") / (رنگ (سرخ) "radius_C") = 6/4 = 3/2 = 3: 2
سرکل اے 2 کے ردعمل اور مرکز کا مرکز (6، 5) ہے. سرکل بی میں 3 کے ایک ریڈیو اور ایک مرکز (2، 4) ہے. اگر حلقہ بی <1، 1> کی طرف سے ترجمہ کیا جاتا ہے تو، کیا یہ دائرے A پر اوپلوپ کرتا ہے؟ اگر نہیں، تو دونوں حلقوں پر پوائنٹس کے درمیان کم از کم فاصلہ کیا ہے؟
"حلقوں پر اوپریپ"> "ہمیں یہاں کیا کرنا ہے، فاصلے (ڈی)" "مراکز کے درمیان ریڈیو کے درمیان" کا موازنہ کریں "•" اگر ریڈیو کی "> D" تو پھر حلقے "او" </ 1> (2) 1 (2 + 1)، "ریڈیڈی" <D "پھر کوئی اوورلوپ نہیں" 4 + 1) سے (3،5) لالرکل (سرخ) "بی بی کا نیا مرکز" "کا حساب کرنے کے لئے" رنگ (نیلے) "فاصلہ فارمولہ" d = sqrt ((x_2-x_1) ^ 2 + (y_2- y_1) ^ 2) "چلو" (x_1، y_1) = (6،5) "اور" (x_2، y_2) = (3،5) d = sqrt ((3-6) ^ 2 + (5-5) ^ 2) = sqrt9 = 3 "ریڈی کی رقم" = 2 + 3 = 5 "ریڈیو ک