جواب:
وضاحت:
f (x) کا ڈومینٹر صفر برابر نہیں ہوسکتا ہے کیونکہ یہ f (x) غیر منفی بنا دیتا ہے. ڈینومینٹر صفر کو برابر کرنے اور حل کرنے کے لۓ قدر فراہم کرتا ہے.
# "حل" x + 2 = 0rArxx = -2rrcolor (سرخ) "خارج شدہ قیمت" #
#rArr "ڈومین" x inRR، x! = - 2 #
#x میں (-oo، -2) uu (-2، oo) لاٹری رنگ (نیلے) "وقفہ کی اطلاع میں" #
# "چلو" y = (x-2) / (x + 2) #
# "رینج کے لئے ایکس موضوع بنانا شروع کرنا" #
#rArry (x + 2) = x-2 #
# rArrxy + 2y = x-2 #
# rArrxy-x = -2-2y #
#rArrx (y-1) = 2 (1 + y) #
#rArrx = - (2 (1 + y)) / (y-1) #
# "حل" y-1 = 0rArry = 1larrcolor (سرخ) "خارج شدہ قیمت" #
# "رینج" y inRR، y! = 1 #
#y میں (-و، 1) uu (1، oo) # گراف {(x-2) / (x + 2) -10، 10، -5، 5}
ڈومین اور رینج 3x-2 / 5x + 1 اور فنکشن کے ڈوبنے والے ڈومین اور رینج کیا ہے؟
ڈومین تمام حقیقتیں -1/5 کے سوا ہے جو انوائس کی حد ہے. رینج 3/5 کے علاوہ تمام حقیقت ہے جس میں آبجیکٹ کا ڈومین ہے. f (x) = (3x-2) / (5x + 1) کی وضاحت کی جاتی ہے اور تمام ایکس کے لئے -1 / 5 کے علاوہ حقیقی اقدار، تاکہ ایف کے ڈومین اور F ^ -1 سیٹنگ کی حد = = 3x -2) / (5x + 1) اور X پیداوار کے لئے حل 5xy + y = 3x-2، تو 5xy-3x = 2-2، اور اس وجہ سے (5y-3) x = -y-2، لہذا، آخر میں x = (- Y-2) / (5y-3). ہم اسے دیکھتے ہیں! = 3/5. تو F کی حد 3/5 کے علاوہ تمام حقیقی ہے. یہ بھی ایف ^ -1 کا ڈومین ہے.
اگر فعل f (x) کا ایک ڈومین ہے 2 <= x <= 8 اور ایک رینج -4 <= y <= 6 اور فعل جی (x) فارمولا جی (x) = 5f کی طرف سے بیان کیا جاتا ہے ( 2x)) پھر ڈومین اور رینج جی کیا ہے؟
ذیل میں نئے ڈومین اور رینج کو تلاش کرنے کے لئے بنیادی فنکشن میں تبدیلیاں استعمال کریں. 5f (x) کا مطلب یہ ہے کہ فن عمودی طور پر پانچ عوامل کی طرف سے بڑھایا جاتا ہے. لہذا، نئی رینج ایک وقفہ کی مدت ہو گی جس میں اصل سے زیادہ پانچ گنا زیادہ ہے. F (2x) کے معاملے میں، نصف کے ایک عنصر کی طرف سے ایک افقی مسلسل کام پر لاگو ہوتا ہے. لہذا ڈومین کے انتہا پسندوں کو حل کیا جاتا ہے. اور اب بھی!
اگر f (x) = 3x ^ 2 اور جی (x) = (x-9) / (x + 1)، اور x = = 1، تو کیا ف (جی (ایکس) برابر ہوگا؟ جی (ف (x))؟ f ^ -1 (x)؟ ڈومین، رینج اور ظہروں کے لئے f (x) کیا ہوگا؟ جی (ایکس) کے لئے ڈومین، رینج اور صفر کیا کریں گے؟
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = جڑ () (x / 3) D_f = {x RR میں}، R_f = {f (x) RR؛ f (x)> = 0} D_g = {x RR؛ x! = - 1}، R_g = {g (X) آر آر میں؛ جی (x)! = 1}