پہلا سوال:
دوسرا سوال:
پہلا اور تیسرا اختیار منتخب کریں.
تیسری سوال:
چوتھائی سوال:
انوائس فنکشن ایک تقریب کی عکاسی ہے
نقطہ
فنکشن ایف ایسا ہے کہ ایکس (x) = a ^ 2x ^ 2-ax + 3b x <1 / (2a) کے لئے جہاں ایک اور ب صورت حال ایک = 1 اور B = -1 تلاش کریں ^ ^ تلاش کریں ^ 1 (cf اور اس کے ڈومین کو تلاش کریں. میں f ^ -1 (x) = f (x) کی رینج جانتا ہوں اور یہ 13/4 ہے لیکن مجھے نابریکی نشانی سمت نہیں معلوم ہے؟
ذیل میں دیکھیں. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 رینج: شکل y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f میں ڈالیں (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 کم قیمت - 13/4 یہ ایکس = 1/2 پر ہوتا ہے تو رینج ہے (- 13/4، oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 چوکنی فارمولا استعمال کرتے ہوئے: y = (- (-1) + -سقرٹ ((- 1) ^ 2-4 (1) (- 3-x))) / 2 یو = (1 + -قرآن (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 تھوڑا سا خیال کے ساتھ ہم دیکھ سکتے ہیں کہ ڈومین کے لئے ہمارے پاس لازمی ہے : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 ڈومین کے ساتھ: (-13 / 4، oo) نوٹس ہے کہ ہم نے
ایکس: 1. 3. 6. 7 پی (ایکس): 0.35. Y. 0.15. 0.2 y کی قدر تلاش کریں؟ مطلب (متوقع قیمت) تلاش کریں؟ معیاری انحراف تلاش کریں؟
اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. اس ویڈیو پر غلط استعمال کی اطلاع دیتے ہوئے ایرر آ گیا ہے. براہ مہربانی دوبارہ کوشش کریں. اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. غلط استعمال کی اطلاع دیتے ہوئے ایرر آ گیا ہے. براہ مہربانی دوبارہ کوشش کریں. اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. غلط استعمال کی اطلاع دیتے ہوئے ایرر آ گیا ہے. براہ مہربانی دوبارہ کوشش کریں. اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. اصلی جڑیں
نیچے ملاحظہ کریں. X ^ 2 + px + q = 0 کے امتیاز ڈیلٹا_1 = پی ^ 2-4ق اور ایکس ^ 2 + rx + s = 0 ہے Delta_2 = r ^ 2-4s اور ڈیلٹا_1 + ڈیلٹا_2 = p ^ 2-4q + r ^ 2-4s = p ^ 2 + r ^ 2-4 (q + s) = (p + r) ^ 2-2pr-4 (q + s) = (p + r) ^ 2-2 [pr -2 (q + s)] اور اگر pr = 2 (q + s)، ہمارے پاس Delta_1 + ڈیلٹا_2 = (p + r) ^ 2 جیسا کہ دو امتیازات کا حصہ مثبت ہے، کم از کم ان میں سے ایک مثبت اور لہذا مساوات میں سے ایک کم از کم ایکس ^ 2 + پی ایکس + ق = 0 اور ایکس ^ 2 + Rx + s = 0 اصلی جڑیں ہیں.