جواب:
# y = -x ^ 2/12-x / 3 + 26/3 #
وضاحت:
دیئے گئے -
عمودی
فوکس
معلومات سے، ہم سمجھ سکتے ہیں کہ پرابولا دوسرا چراغ میں ہے. چونکہ توجہ مرکوز سے نیچے ہے، پارابولا کا سامنا کرنا پڑتا ہے.
عمودی پر ہے
اس کے بعد فارمولا کی عام شکل ہے -
# (x-h) ^ 2 = -4xxaxx (y-k) #
اب اقدار کو متبادل
# (x - (- 2)) ^ 2 = -4xx3xx (y-9) #
# (x + 2) ^ 2 = -12 (y-9) #
# x ^ 2 + 4x + 4 = -12y + 108 #
منتقلی کے ذریعے ہم -
# -12y + 108 = x ^ 2 + 4x + 4 #
# -12y = x ^ 2 + 4x + 4-108 #
# -12y = x ^ 2 + 4x-104 #
# y = -x ^ 2/12-x / 3 + 26/3 #
(2، 6) اور ایک عمودی (-2، 9) پر توجہ مرکوز کے ساتھ ایک پرابولا کی مساوات کیا ہے؟ کیا فوکس اور عمودی تبدیل کردیے جائیں گے؟
مساوات y = -1 / 12 (x + 2) ^ 2 + 9. دوسرا مساوات y = 1/12 (x + 2) * 2 + 6 توجہ F = (--6) ہے اور عمودی وی = (- 2،9) ہے لہذا، ڈائریکٹر y = 12 کے طور پر عمودی توجہ مرکوز اور ڈائرکٹری (y + 6) / 2 = 9 =>، y + 6 = 18 =>، y = 12 پر قابو پانے سے متصل ہے اور پرابولا پر کوئی پوائنٹ (x، y) ڈائریکٹر y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 گراف {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47، 32.45، -16.23، 16.25]} دوسرا کیس یہ ہے کہ توجہ F = (- 2،9) ہے اور عمودی وی = (- 2،6) ہے لہذا، ڈائریکٹر Y =
(2، 6) اور ایک عمودی (-2، 9) پر توجہ مرکوز کے ساتھ پرابولا کی مساوات کیا ہے؟
Y - 9 = 1/12 (x + 2) ^ 2 جنیوی مساوات y - k = 1 / 4p (x - h) ^ 2 p فاصلہ ہے = 3 (h، k) = vertex location = 2، 9)
(3، -9) پر توجہ مرکوز کے ساتھ پرابولا کے مساوات کی عمودی شکل کیا ہے اور y = -10 کا ایک ڈائرکٹری کیا ہے؟
(x - 3) ^ 2 = 2 (y - 19/2) ایک پارابولا کے عمودی ہمیشہ توجہ مرکوز اور ڈائریکٹر کے درمیان ہے دیئے گئے سے، ڈائریکٹرکس توجہ سے کم ہے. لہذا پارابلا اوپر کھولتا ہے. پی ڈی ایف سے فاصلے کا فاصلہ ہے توجہ مرکوز پی = 1/2 (-9- -10) = 1/2 * 1 = 1/2 عمودی (ایچ، ک) = (3، (-9 + (- 10)) / 2) = (- 3، -19/2) (xh) ^ 2 = 4p (yk) (x-3) ^ 2 = 4 * (1/2) (y-19 / 2) (x - 3) ^ 2 = 2 (y - 19/2) گراف کو براہ راست ڈائریکٹری y = -10 # گراف دیکھیں ({((3 - 3) ^ 2-2 (y - 19 / 2)) (y + 10) = 0 [-25،25، -13،13]} فلپائن سے ایک اچھا دن ہے