جواب:
عمودی شکل ہے
وضاحت:
کسی بھی نقطہ نظر
دونوں اطراف گراؤنڈ
توسیع
گراف {-1/10 (ایکس -2) ^ 2-55 / 10 -23.28، 28.03، -22.08، 3.59}
(2، 6) اور ایک عمودی (-2، 9) پر توجہ مرکوز کے ساتھ ایک پرابولا کی مساوات کیا ہے؟ کیا فوکس اور عمودی تبدیل کردیے جائیں گے؟
مساوات y = -1 / 12 (x + 2) ^ 2 + 9. دوسرا مساوات y = 1/12 (x + 2) * 2 + 6 توجہ F = (--6) ہے اور عمودی وی = (- 2،9) ہے لہذا، ڈائریکٹر y = 12 کے طور پر عمودی توجہ مرکوز اور ڈائرکٹری (y + 6) / 2 = 9 =>، y + 6 = 18 =>، y = 12 پر قابو پانے سے متصل ہے اور پرابولا پر کوئی پوائنٹ (x، y) ڈائریکٹر y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 گراف {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47، 32.45، -16.23، 16.25]} دوسرا کیس یہ ہے کہ توجہ F = (- 2،9) ہے اور عمودی وی = (- 2،6) ہے لہذا، ڈائریکٹر Y =
(0، -15) پر توجہ مرکوز کے ساتھ parabola مساوات کی عمودی شکل کیا ہے اور Y = -16 کی ایک ڈائریکٹر؟
ایک parabola کے عمودی شکل y = ایک (x-h) + k ہے، لیکن جس کے ساتھ دیا جاتا ہے اس کے معیار معیاری، (x-h) ^ 2 = 4c (y-k) کو دیکھ کر شروع کرنا آسان ہے. پارابولا کے عمودی (ایچ، ک) ہے، ڈائرکٹری مساوات Y = k-C کی طرف سے بیان کیا جاتا ہے، اور توجہ (ایچ، ک + +) ہے. ایک = 1 / (4 سی). اس پرابولا کے لئے، توجہ (h، k + c) ہے (0، "-" 15) تو h = 0 اور k + c = "-" 15. ڈائرکٹری y = k-c y = "-" 16 ہے لہذا k-c = "-" 16. اب ہمارے پاس دو مساوات ہیں اور ک اور C: {(k + c = "-" 15 ")، (kc =" - "16) کے اقدار کو تلاش کر سکتے ہیں:} اس نظام کو حل کرنے کو k = (" - "31) / 2 اور سی
(2، -13) پر توجہ مرکوز کے ساتھ parabola مساوات کی عمودی شکل کیا ہے اور Y = 23 کے ایک ڈائریکٹر کیا ہے؟
پارابولا کی مساوات y = -1 / 72 (x-2) ^ 2 + 5 ہے، عمودی توجہ مرکوز (2، -13) اور ڈائریکٹر Y = 23 کے درمیان دائرے پر ہے .یہ عمودی 2،5 ہے. پرابولا کھولتا ہے نیچے اور مساوات y = -a (x-2) ^ 2 + 5 عمودی توجہ مرکوز اور عمودی سے equidistance پر ہے اور فاصلے D = 23-5 = 18 ہم جانتے ہیں | a | = 1 / (4 * d ): .a = 1 / (4 * 18) = 1/72 اس طرح پرابولا کی مساوات y = -1 / 72 (x-2) ^ 2 + 5 گراف {-1/72 (x-2) ^ 2 + 5 [-80، 80، -40، 40]} [جواب]