جواب:
عمودی پر ہے
وضاحت:
یہ چوککار فنکشن "عمودی شکل" میں لکھا جاتا ہے، یا
جب سے
The سمتری کی محور صرف ایک غیر معمولی لائن ہے جو ایک پارابولا کے عمودی حصے کے ذریعے جاتا ہے جہاں آپ کو نصف میں پارابولا جوڑا جاتا ہے، دوسرے کے اوپر ایک طرف کے ساتھ.
چونکہ اس کے ذریعے عمودی لائن ہوگی
گراف 2 (y - 2) = (x + 3) ^ 2 کے لئے سمیٹری اور عمودی کی محور کیا ہے؟
عمودی (-3، 2) میں ہے اور سمتری کی محور ایکس = -3 دی گئی ہے: 2 (y - 2) = (x + 3) ^ 2 ایک پارابولا کے مساوات کے لئے عمودی شکل ہے: y = a (x - h) ^ 2 + k جہاں "a" x ^ 2 اصطلاح کی گنجائش ہے اور (h، k) عمودی ہے. (ایکس -3) کے طور پر دیئے گئے مساوات میں (x + 3) لکھیں: 2 (y - 2) = (x - -3) ^ 2 دونوں طرفوں کو دونوں طرف تقسیم کریں 2: Y - 2 = 1/2 (x - -3) ^ 2 2 دونوں اطراف میں شامل کریں: y = 1/2 (x -3 -3) ^ 2 + 2 عمودی (-3، 2) میں ہے اور سمتری کی محور ایکس = 3 ہے.
گراف ایف (x) = 2/3 (x + 7) ^ 2-5 کے لئے سمیٹری اور عمودی کی محور کیا ہے؟
وضاحت ملاحظہ کریں یہ ایک چراغ کی عمودی شکل مساوات ہے. لہذا آپ مساوات کو تقریبا مساوات سے پڑھ سکتے ہیں. سمیٹری کی محور ہے (-1) xx7-> x = -7 عمودی -> (x، y) = (- 7، -5)
گراف ایف (x) = 2x ^ 2 + x - 3 کے لئے سمیٹری اور عمودی کی محور کیا ہے؟
سمیٹری کی محور ایکس = -1 / 4 ہے، عمودی = = - - 1/4، -25 / 8 ہے. ہم چوکوں f (x) = 2x ^ 2 + x-3 = 2 (x ^ 2 + 1 مکمل کرتے ہیں. / 2x) -3 = 2 (x ^ 2 + 1 / 2x + 1/16) -3-2 / 16 = 2 (x + 1/4) ^ 2-25 / 8 سمیٹری کی محور ایکس = -1 / 4 عمودی = (- 1/4، -25 / 8) گراف {2x ^ 2 + x-3 [-7.9، 7.9، -3.95، 3.95]}