جواب:
مثلث کی آرتھویںٹکٹر ہے
وضاحت:
چلو
چلو
چلو
کی ڈھال
کی ڈھال
ذیلی.
equn سے
لہذا، مثلث کی آرتھویںٹکٹر ہے
مثلث اے کے 12 اور دو طرفہ لمبائی 5 اور 7 کے علاقے ہیں. مثلث بی مثلث کے برابر ہے اے اور 1 کی لمبائی کے ساتھ ایک طرف ہے. مثلث بی کے زیادہ سے زیادہ اور کم از کم ممکنہ علاقوں کیا ہیں؟
زیادہ سے زیادہ ایریا = 187.947 "" مربع یونٹس کم از کم ایریا = 88.4082 "" مربع یونٹس مثلث A اور B اسی طرح ہیں. تناسب اور تناسب کے تناسب کے ذریعہ، مثلث بی تین ممکنہ مثلث ہیں. مثلث الف کے لئے: اطراف x = 7، y = 5، Z = 4.800941906394، زاویہ Z = 43.29180759327 ^ @ زاویہ Z کے درمیان خلیج کے علاقے کے لئے فارمولہ استعمال کرتے ہوئے علاقائی = 1/2 * x * Y * گناہ Z 12 = 1/2 * 7 * 5 * گناہ ZZ = 43.29180759327 ^ @ مثلث بی کے لئے تین ممکنہ مثلث: اطراف مثلث ہیں 1. x_1 = 19، y_1 = 95/7، z_1 = 13.031128031641، زاویہ Z_1 = 43.29180759327 ^ @ مثلث 2. x_2 = 133/5، y_2 = 19، z_2 = 18.243579244297، زاویہ Z_2 = 43.29180759327 ^
مثلث اے میں 12 اور دو طرفہ لمبائی 6 اور 9 ہے. مثلث بی مثلث الف کے برابر ہے اور 15 کی لمبائی کے ساتھ ایک طرف ہے. مثلث بی کے زیادہ سے زیادہ اور کم از کم ممکنہ علاقوں کیا ہیں؟
ڈیلٹا ایس اینڈ بی اسی طرح ہیں. ڈیلٹا بی کے سب سے زیادہ علاقے کو حاصل کرنے کے لئے، ڈیلٹا بی کے سائیڈ 15 سے منسلک ہونا چاہئے کہ ڈیلٹا اے کے حصے 15 تناسب میں ہیں: 6 اس طرح علاقوں 15 ^ 2: 6 ^ 2 = 225 کے تناسب میں ہوں گے: 36 مثلث بی (12 * 225) / 36 = 75 کا زیادہ سے زیادہ علاقہ اسی طرح کم از کم علاقہ حاصل کرنے کے لئے، ڈیلٹا اے کی طرف 9 میں ڈیلٹا بی کے مطابق ہوگا 15 اطلاق تناسب 15: 9 اور علاقوں میں 225: 81 ہیں. ڈیلٹا بی کے کم سے کم علاقے = (12 * 225) / 81 = 33.3333
مثلث اے، بی، اور سی کے ساتھ مثلث A اور B کے ساتھ بالترتیب 3 اور 5 کی لمبائی ہوتی ہے. A اور C کے درمیان زاویہ (13pi) / 24 ہے اور بی اور سی کے درمیان زاویہ (7pi) / 24 ہے. مثلث کا کیا علاقہ ہے؟
3 قوانین کے استعمال کی طرف سے: زاویے کی مقدار کاسمینن ہیرو کے فارمولا کا علاقہ 3.75 ہے. سی سی ریاستوں کے لئے کاسمینز کا قانون: C ^ 2 = A ^ 2 + B ^ 2-2 * A * B * cos (c) یا C = sqrt (A ^ 2 + B ^ 2-2 * A * B * cos (c)) جہاں 'سی' کے درمیان زاویہ A اور B. یہ جانتا ہے کہ تمام زاویوں کی ڈگری کی مقدار 180 کے برابر ہے یا، اس معاملے میں رڈ میں بولا، π: a + b + c = π c = π-bc = π-13 / 24π-7 / 24π = 24 / 24π-13 / 24π-7 / 24π = (24-13-7) / 24π = 4 / 24π = π / 6 سی = π / 6 اب کہ زاویہ سی معلوم ہے، سائڈ سی شمار کی جا سکتی ہے: C = sqrt (3 ^ 2 + 5 ^ 2-2 * 3 * 5 * کاس (π / 6)) = sqrt (9 + 25-30 * sqrt (3) / 2) = 8.019 سی = 2.8318 ہ