F (t) = (t ^ 2-sint، 1 / (t-1)) کا مشتق کیا ہے؟

F (t) = (t ^ 2-sint، 1 / (t-1)) کا مشتق کیا ہے؟
Anonim

جواب:

ہر حصے کو الگ الگ طور پر ضم، کیونکہ وہ ہر ایک مختلف محور میں ہیں.

#f '(t) = (2t-cost، -1 / (t-1) ^ 2) #

وضاحت:

پہلا حصہ

# (t ^ 2-sint) '= 2t-cost #

دوسرا حصہ

# (1 / (t-1)) '= ((t-1) ^ - 1)' = - 1 * (t-1) ^ (- 1-1) * (t-1) '= #

# = - (t-1) ^ (- 2) * 1 = -1 / (t-1) ^ 2 #

نتیجہ

#f '(t) = (2t-cost، -1 / (t-1) ^ 2) #

جواب:

# -1 / ((2t-cost) (t-1) ^ 2) #

وضاحت:

#x (t) = t ^ 2-sint #

#y (t) = 1 / (t-1) #

#x '(t) = 2t-cost #

#y '(t) = - 1 / (t-1) ^ 2 #

پیرامیٹرک فنکشن کے ڈسپوزٹک کو تلاش کرنے کے لئے، تلاش کریں

# dy / dx = (dy / dt) / (dx / dt) = (y '(t)) / (x' (t)) = (- 1 / (t-1) ^ 2) / (2t-cost) = - 1 / ((2t-cost) (t-1) ^ 2) #