جواب:
اگر محور ایکس محور کے متوازی ہونے کا فرض کیا جاتا ہے،
وضاحت:
عمودی کے ساتھ پارابولا کے محور کا مساوات دو
اس کے بعد عمودی میں ٹیننٹ کا مساوات ہو گا
اب، کسی بھی پارابولا کے مساوات کے طور پر وی کے طور پر ہے
اس کے ذریعے گزر جاتا ہے
پیرامیٹر ایک اور ایم کے طور پر
خاص طور پر، اگر محور x-محور، میٹر = 0 کے متوازی ہونے کا فرض کیا جاتا ہے،
اس طریقہ کو نظر انداز کیا جا سکتا ہے.
اس معاملے میں،
عمودی. اور پارابولا کا مساوات بن جاتا ہے
جیسا کہ یہ گزرتا ہے (2، -3)، ایک = 25/3.
پرابولا کی طرف سے دیا جاتا ہے
فرض کریں کہ پرابولا عمودی (4،7) ہے اور نقطہ (-3.8) کے ذریعے بھی گزرتا ہے. عمودی شکل میں پارابولا کی مساوات کیا ہے؟
اصل میں، دو پیرابولس (عمودی شکل) ہیں جو آپ کی وضاحتیں پورا کرتے ہیں: y = 1/49 (x- 4) ^ 2 + 7 اور x = -7 (y-7) ^ 2 + 4 وہاں دو عمودی شکل ہیں: y = a (x- h) ^ 2 + k اور x = a (yk) ^ 2 + h کہاں (h، k) عمودی ہے اور "ایک" کی قدر ایک دوسرے نقطہ کو استعمال کرکے پایا جا سکتا ہے. ہمیں کسی فارم کو خارج کرنے کا کوئی سبب نہیں دیا جاتا ہے، لہذا ہم دونوں کو دیئے ہوئے عمودی دونوں میں تبدیل کریں: y = a (x- 4) ^ 2 + 7 اور x = a (y-7) ^ 2 + 4 دونوں اقدار کے لئے حل کریں نقطہ (-3،8) کا استعمال کرتے ہوئے: 8 = a_1 (-3- 4) ^ 2 + 7 اور -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 اور - 7 = a_2 (1) ^ 2 a_1 = 1/49 اور a_2 = -7 یہاں دو مساوات ہی
پرابولا کا مساوات جس میں (0، 0) عمودی موجود ہے اور نقطہ (-1، -64) سے گزرتا ہے؟
اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. غلط استعمال کی اطلاع دیتے ہوئے ایرر آ گیا ہے. براہ مہربانی دوبارہ کوشش کریں. اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. غلط استعمال کی اطلاع دیتے ہوئے ایرر آ گیا ہے. براہ مہربانی دوبارہ کوشش کریں. اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. غلط استعمال کی اطلاع دیتے ہوئے ایرر آ گیا ہے. براہ مہربانی دوبارہ کوشش کریں. اگر یہ ایرر برقرار رہے تو ہمارے ہیلپ ڈیسک سے رابطہ کریں. 1) ^ 2 = ایک = -64 F (x) = 64x ^ 2
پرابولا کا مساوات جس میں (-3، 6) میں عمودی ہے اور نقطہ (1،9) سے گزرتا ہے؟
F (x) = 3 / 16x ^ 2 + 9 / 8x + 123/16 پیرابولا ایف کو محور ^ 2 + bx + c کے طور پر لکھا جاتا ہے کہ ایک! = 0. سب سے پہلے، ہم جانتے ہیں کہ اس پرابول ایک عمودی ہے ایکس = -3 تو ایف '(- 3) = 0. اس سے قبل ہمیں ہمیں ب کے کام میں دیتا ہے. f '(x) = 2ax + b so f' (- 3) = 0 iff -6a + b = 0 iff b = 6a ہمیں اب دو نامعلوم پیرامیٹرز کے ساتھ نمٹنے کے لئے ہے، اور ایک. ان کو تلاش کرنے کے لئے، ہمیں مندرجہ ذیل لکیری نظام کو حل کرنے کی ضرورت ہے: 6 = 9a - 18a + c؛ 9 = a + 6a + c iff 6 = -9a + c؛ 9 = 7a + c ہم اب دوسری سطر کو دوسری سطر میں دوسری سطر کو دوسری سطر میں نکال دیں: 6 = -9a + c؛ 3 = 16a تو ہم ابھی جانتے ہیں کہ ایک = 3/16. ہم