جواب:
ہمیں سب سے پہلے عمودی فارم کا تجزیہ کرنا ضروری ہے.
وضاحت:
عمودی فارم ہے
32 - 8 = 4a #
مساوات ہے
پریکٹس مشق:
- ایک پراابولا کے مساوات کا پتہ لگائیں جو (2، 3) میں عمودی ہے اور اس سے گزر جاتا ہے (-5، -8).
چیلنج مسئلہ:
ایک پارابولا کی مساوات جو پوائنٹس سے گزر جاتی ہے
اچھی قسمت!
فرض کریں کہ پرابولا عمودی (4،7) ہے اور نقطہ (-3.8) کے ذریعے بھی گزرتا ہے. عمودی شکل میں پارابولا کی مساوات کیا ہے؟
اصل میں، دو پیرابولس (عمودی شکل) ہیں جو آپ کی وضاحتیں پورا کرتے ہیں: y = 1/49 (x- 4) ^ 2 + 7 اور x = -7 (y-7) ^ 2 + 4 وہاں دو عمودی شکل ہیں: y = a (x- h) ^ 2 + k اور x = a (yk) ^ 2 + h کہاں (h، k) عمودی ہے اور "ایک" کی قدر ایک دوسرے نقطہ کو استعمال کرکے پایا جا سکتا ہے. ہمیں کسی فارم کو خارج کرنے کا کوئی سبب نہیں دیا جاتا ہے، لہذا ہم دونوں کو دیئے ہوئے عمودی دونوں میں تبدیل کریں: y = a (x- 4) ^ 2 + 7 اور x = a (y-7) ^ 2 + 4 دونوں اقدار کے لئے حل کریں نقطہ (-3،8) کا استعمال کرتے ہوئے: 8 = a_1 (-3- 4) ^ 2 + 7 اور -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 اور - 7 = a_2 (1) ^ 2 a_1 = 1/49 اور a_2 = -7 یہاں دو مساوات ہی
پرابولا کی مساوات کیا ہے (-2، 2) میں عمودی ہے اور نقطہ (3،37) کے ذریعے گزرتا ہے؟
5y = 7x ^ 2 + 28x + 38 y = ax ^ 2 + bx + c V = (-b / (2a)، - ڈیلٹا / (4a)) = (-2، 2) b = 4a ڈیلٹا = -8a = (4a) ^ 2 - 4AC رائٹرورو ایک نی 0، سی = frac {16a + 8} {4} = 4a + 2 37 = 9a + 3b + c 37 = 9a + 12a + 4a + 2 35 = 25a Rightarrow a = 7 / 5، بی = 28/5، سی = 38/5
پرابولا کا مساوات جس میں (-3، 6) میں عمودی ہے اور نقطہ (1،9) سے گزرتا ہے؟
F (x) = 3 / 16x ^ 2 + 9 / 8x + 123/16 پیرابولا ایف کو محور ^ 2 + bx + c کے طور پر لکھا جاتا ہے کہ ایک! = 0. سب سے پہلے، ہم جانتے ہیں کہ اس پرابول ایک عمودی ہے ایکس = -3 تو ایف '(- 3) = 0. اس سے قبل ہمیں ہمیں ب کے کام میں دیتا ہے. f '(x) = 2ax + b so f' (- 3) = 0 iff -6a + b = 0 iff b = 6a ہمیں اب دو نامعلوم پیرامیٹرز کے ساتھ نمٹنے کے لئے ہے، اور ایک. ان کو تلاش کرنے کے لئے، ہمیں مندرجہ ذیل لکیری نظام کو حل کرنے کی ضرورت ہے: 6 = 9a - 18a + c؛ 9 = a + 6a + c iff 6 = -9a + c؛ 9 = 7a + c ہم اب دوسری سطر کو دوسری سطر میں دوسری سطر کو دوسری سطر میں نکال دیں: 6 = -9a + c؛ 3 = 16a تو ہم ابھی جانتے ہیں کہ ایک = 3/16. ہم