جواب:
وضاحت:
ایک پروجیکٹ پائپ / 6 کے زاویہ اور 3 9 میٹر / رفتار کی رفتار پر گولی مار دی گئی ہے. پروجیکٹ زمین کتنی دور ہوگی
یہاں ضروری فاصلہ کچھ نہیں بلکہ پروجیکشن تحریک کی حد ہے جس کو فارمولہ R = (u ^ 2 sin 2 theta) / G کی طرف سے دیا جاتا ہے، جہاں آپ پروجیکشن کی رفتار ہے اور تھیٹا پروجیکشن کے زاویہ ہے. دیئے گئے، آپ = 39 ایم ایس ^ -1، تھیٹا = (پی پی) / 6 تو، ہمیں حاصل شدہ اقدار کو ڈال، R = 134.4 میٹر
ایک پروجیکٹ پی آئی / 12 کے زاویے اور 3 6 میٹر / ے کی رفتار میں گولی مار دی گئی ہے. پروجیکٹ زمین کتنی دور ہوگی
اعداد و شمار: - پھینک کا زاویہ = theta = pi / 12 ابتدائی ویلیکیٹ + موومنٹ کی رفتار = v_0 = 36m / s کشش ثقل کی وجہ سے تیز رفتار = جی = 9.8 میٹر / ے ^ 2 رینج = R = ؟؟ سول: - ہم جانتے ہیں کہ: R = (v_0 ^ 2sin2theta) / G R = (36 ^ 2sin (2 * pi / 12)) / 9.8 = (1296sin (pi / 6)) / 9.8 = (1296 * 0.5) / 9.8 / 648/ 9.8-66.1224 میٹر کا مطلب ہے R = 66.1224 میٹر
ایک پروجیکٹ 3 ملی میٹر / رفتار اور پی او / 8 کے زاویہ کی رفتار پر گولی مار دی گئی ہے. پروجیکٹ کی چوٹی اونچائی کیا ہے؟
H_ (چوٹی) = 0،00888 "میٹر" "اس مسئلہ کو حل کرنے کے لئے ضروری فارمولہ ہے:" h_ (چوٹی) = (v_i ^ 2 * گناہ ^ 2 تھیٹا / (2 * جی)) v_i = 3 m / s theta = 180 / منسوخ (پائپ) * منسوخ کریں (پی پی) / 8 تھیٹا = 180/8 گناہ تھیٹا = 0،13917310096 گناہ ^ 2 تھیٹا = 00193691520308 h_ (چوٹی) = 3 ^ 2 * (001 93691520308) / (2 * 9،81) h_ (چوٹی) = 9 * (001 93691520308) / (1962) h_ (چوٹی) = 0،00888 "میٹر"