جواب:
وضاحت:
پوائنٹس کے درمیان ڈھال کے مساوات
# "ڈھال" = (y_2-y_1) / (x_2-x_1) #
تو، ہمارے پاس پوائنٹس ہیں
# (x_1، y_1) rarr (7،2) #
# (x_2، y_2) rarr (0، y) #
اور ایک ڈھال
# 5 = (y-2) / (0-7) #
# 5 = (y-2) / (- 7) #
# -35 = y-2 #
# y = -33 #
اس طرح، ڈھال کے درمیان
Xy-plane میں لائن ایل کے گراف پوائنٹس (2،5) اور (4،11) کے ذریعے گزرتے ہیں. لائن میٹر کے گراف -2 میں ایک ڈھال ہے اور ایکس ایکس مداخلت 2. اگر نقطہ (x، y) لائنز اور میٹر کی چوڑائی کا نقطہ نظر ہے، تو Y کی قدر کیا ہے؟
Y = 2 مرحلہ 1: لائن ایل کے مساوات کا تعین کریں ہمارے پاس ڈھال فارمولہ ایم = (y_2-y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 کی طرف سے اب پوائنٹ ڈھال فارم کے ذریعہ مساوات y- y_1 = m (x-x_1) y -11 = 3 (x-4) y = 3x-12 + 11 y = 3x-1 مرحلہ 2: لائن میٹر کے مساوات کا تعین کریں X-intercept ہمیشہ y = 0. لہذا، دیئے گئے نقطہ (2، 0) ہے. ڈھال کے ساتھ، ہمارے پاس مندرجہ ذیل مساوات ہیں. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = 2x + 4 مرحلہ 3: مساوات کا نظام لکھیں اور حل کریں ہم نظام کے حل کو تلاش کرنا چاہتے ہیں {(y = 3x = 1)، (y = -2x + 4):} متبادل کی طرف سے: 3x - 1 = -2x + 4 5x = 5 x = 1 اس کا مطلب یہ ہے کہ Y = 3 (1) - 1 = 2. امید ہے کہ
دو (1، 1) اور (10، 4) ہم آہنگی طیارے پر پوائنٹس A اور B کے ہم آہنگی بنیں. پوائنٹس A سے بی پوائنٹس سے یونٹس میں فاصلہ کیا ہے؟
"فاصلہ" = sqrt (73) 8.544 یونٹس دیئے گئے: A (2، 1)، بی (10، 4). A سے B. فاصلہ تلاش کریں فاصلہ فارمولہ استعمال کریں: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((4 - 1) ^ 2 + (10 - 2) ^ 2) = sqrt (3 ^ 2 + 8 ^ 2) = sqrt (73)
آپ کا ریاضی استاد آپ کو بتاتا ہے کہ اگلے ٹیسٹ 100 پوائنٹس کے قابل ہے اور 38 مسائل پر مشتمل ہے. ایک سے زیادہ انتخاب کے سوالات 2 پوائنٹس کے قابل ہیں اور لفظ کے مسائل 5 پوائنٹس کے قابل ہیں. ہر قسم کی سوال کتنے ہیں؟
اگر ہم یہ سمجھتے ہیں کہ ایکس ایک سے زیادہ انتخاب کے سوالات کی تعداد ہے، اور Y لفظ کی دشواریوں کی تعداد ہے، ہم ہم مساوات کا نظام لکھ سکتے ہیں: {(x + y = 38)، (2x + 5y = 100):} اگر ہم 2 سے پہلے مساوات کو بڑھانے میں ہمارا: {(-2x-2y = -76)، (2x + 5y = 100):} اب اگر ہم دونوں مساوات کو شامل کریں تو ہم صرف 1 نامعلوم (y): 3y = 24 کے ساتھ مساوات حاصل کرتے ہیں. => y = 8 ہم نے پہلے مساوات کے حساب سے حساب کی قیمت کو کم کر کے: x + 8 = 38 => x = 30 حل: {(x = 30)، (y = 8):} اس کا مطلب یہ ہے کہ: ٹیسٹ 30 تھا ایک سے زیادہ پسند سوالات، اور 8 لفظی مسائل.