جواب:
وضاحت:
پی کے لئے حل کرنے کے لئے، سب سے پہلے ہمیں ڈینومین سے چھٹکارا حاصل کرنا ہوگا
ایسا کرنے کے لئے، ہم مساوات کے دونوں اطراف 9 سے بڑھتے ہیں
اس کے بعد ہم دونوں اطراف سے 54 کو الگ الگ کرنے کے لئے پی
اور اس کا جواب ہے.
جواب:
وضاحت:
کی قیمت تلاش کرنے کے لئے
دونوں طرفوں پر چھٹکارا 6، ہم حاصل کرتے ہیں
دونوں طرف سے دونوں طرف پلٹائیں 9
آپ {frac {(x - 4)} {3} = frac {9} {12} کو کیسے حل کرتے ہیں؟
X = 25/4 سب سے پہلے، دونوں طرفوں کو ضرب 12. (12 (x-4)) / 3 = 9 (منسوخ (12) (x-4)) / منسوخ (3) = 9 4 (x-4) = 9 دونوں طرفوں پر 4 تقسیم ایکس 4 = 9/4 اور آخر میں، 4 دونوں طرفوں کو شامل کریں. ایکس = 9/4 + 4 اگر آپ چاہیں تو، آپ ان کو ایک ہی ڈومینٹر بنا سکتے ہیں: x = 9/4 + 4/1 x = 9/4 + 16/4 رنگ (نیلے رنگ) (ایکس = 25/4) امید ہے کہ مدد ملتی ہے!
آپ {frac {z + 1} {5} = frac {2} {3} کیسے حل کرتے ہیں؟
ز = 7/3 مساوات کو حل کرنے کے لئے ایک آسان طریقہ ہے جو برابر نشان کے ہر حصے پر ایک حصہ پر مشتمل ہوتا ہے. ایک طرف پر ڈومینٹر دوسرے نمبر پر پوائنٹر کی طرف سے ضرب کیا جاتا ہے، (مندرجہ ذیل: (ز + 1) / 5 = 2/3 3 (ز + 1) = 5 (2) پھر دائیں طرف ضرب اور 3 کو تقسیم کرنے میں دونوں اطراف، 3z = 10-3 3z = 7 پھر بریکٹ، 3z + 3 = 10 منحصر 3، پھر 3، ز = 7/3 کے دونوں اطراف تقسیم
Frac {x} {x-2} + frac {x} {x + 3} = frac {1} {x ^ 2 + x-6} کے لئے کم از کم عام ایک سے زیادہ کیا ہے اور آپ مساوات کیسے حل کرتے ہیں ؟
وضاحت (x-2) (x + 3) FOIL (سب سے پہلے، باہر، اندر، آخری) ملاحظہ کریں x ^ 2 + 3x-2x-6 ہے جس میں ایکس ^ 2 + X-6 کو آسان بناتا ہے. یہ آپ کے کم سے کم عام کثیر (LCM) ہو گا لہذا آپ LCM میں ایک عام ڈومینٹر تلاش کر سکتے ہیں ... x / (x-2) ((x + 3) / (x + 3)) + x / (x + 3 ((x-2) / (x-2)) = 1 / (x ^ 2 + x-6) حاصل کرنے کے لئے آسان: (x (x + 3) + x (x-2)) / (x ^ 2 + x-6) = 1 / (x ^ 2 + x-6) آپ دیکھتے ہیں کہ ڈینمارک ایک ہی ہیں، تو ان کو لے لو. اب آپ مندرجہ ذیل ہیں - x (x + 3) + x (x-2) = 1 چلو تقسیم کریں؛ اب ہمارے پاس x ^ 2 + 3x + x ^ 2-2x = 1 شرائط کی طرح شامل، 2x ^ 2 + x = 1 ایک طرف سے 0 کے برابر بنائیں اور چراغ کو حل کریں. 2x ^ 2 + x-1