ایک دائرے کا مرکز (3، 4) میں ہے اور اس سے گزرتا ہے (0، 2). حلقے پر آرک ڈھکنے والی (لمبائی) / 6 ریلیوں کی لمبائی کیا ہے؟

ایک دائرے کا مرکز (3، 4) میں ہے اور اس سے گزرتا ہے (0، 2). حلقے پر آرک ڈھکنے والی (لمبائی) / 6 ریلیوں کی لمبائی کیا ہے؟
Anonim

دائرے کے مرکز میں ہے #(3,4)#حلقہ گزر جاتا ہے #(0,2)#

دائرے پر آرک کی طرف سے بنایا زاویہ =# pi / 6 #آرک کی لمبائی# =??#

چلو # سی = (3،4) #, # پی = (0،2) #

کے درمیان فاصلے کی حساب # سی # اور # پی # دائرے کے ردعمل کو دونگا.

# | CP | = sqrt ((0-3) ^ 2 + (2-4) ^ 2) = sqrt (9 + 4) = sqrt13 #

ردعمل کی طرف سے منظور کیا جانا چاہئے # r #، مرکز میں آرک کی طرف سے ضم زاویہ کی طرف اشارہ کیا جائے گا # theta # اور آرک کی لمبائی کی طرف سے ظاہر کیا جائے گا # s #.

پھر # r = sqrt13 # اور # theta = pi / 6 #

ہم جانتے ہیں کہ:

# s = rtheta #

#implies s = sqrt13 * pi / 6 = 3.605 / 6 * pi = 0.6008pi #

# میں s = 0.6008pi #

لہذا، آرک کی لمبائی ہے # 0.6008pi #.